
SyDe 312 - Numerical Methods Unit I Linear Systems

Singular value decomposition supplementary problems

1. Student exploration.

2. Student exploration.

3. A =
[

4 11 14
8 7 −2

]
is a 2× 3 matrix so we expect the SVD A = USV T to be have U(2× 2),

S(2 × 3), and V (3 × 3). We can also expect 2 singular values for A, and the S matrix

will have a third column of zeros. The matrix AT A =

 80 100 40
100 170 140
40 140 200

 has eigenvalues

360, 90 , and 0. The singular values of A are the square roots of the first two eigenvalues:
σ1 = 6

√
10, σ2 = 3

√
10 (conventionally numbered in order of decreasing magnitude). The

third zero eigenvalue is irrelevant. Note that the singular values of A must also be square
roots of eigenvalues of AAT , which is a 2× 2 matrix, and therefore has only two eigenvalues
(the two non-zero eigenvalues of AT A).

The first two columns of V are eigenvectors of AT A corresponding to the non-zero eigenvalues:

v1 =


1/3

2/3

2/3

 v2 =


2/3

1/3

−2/3


The third column of V can be any unit length column vector orthogonal to the first two

columns, for instance v3 =


2/3

−2/3

1/3


Last calculate the two columns of U . These are obtained from the columns of V corresponding
the the non-zero singular values:

u1 = σ−1
1 Av1 =

1
6
√

10

[
4 11 14
8 7 −2

]
1/3

2/3

2/3

 =
1√
10

[
3
1

]

u2 = σ−1
2 Av2 =

1
3
√

10

[
4 11 14
8 7 −2

]
2/3

1/3

−2/3

 =
1√
10

[
−1

3

]

So we have:

U =
1√
10

[
3 −1
1 3

]
The matrix of singular values is:

S =

[
6
√

10 0 0

0 3
√

10 0

]
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The complete SVD is:

A = USV T =
1√
10

[
3 −1
1 3

][
6
√

10 0 0

0 3
√

10 0

]  1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3


Compared to the result of the Matlab SVD function we can see that it is the same except for
sign changes, with columns u1, v1 and v3 negatives are our corresponding columns. The SVD
is not unique.

4. The matrix A


1 −1

−2 2

2 −2

 is 3× 2 so we expect the SVD A = USV T to be have U(3× 3),

S(3 × 2), and V (2 × 2). We can also expect 2 singular values for A, and the S matrix will
have a third row of zeros.

The product matrix AT A =

[
9 −9

−9 9

]
has eigenvalues 18 and 0 with corresponding (unit)

eigenvectors: v1 =
[
−
√

2/2√
2/2

]
and v2 =

[
−
√

2/2
−
√

2/2

]
. These eigenvectors form the two

columns of V and the square roots of the eigenvalues are the singular values: σ1 = 3
√

2, σ2 = 0.

Last calculate the columns of U . The first column is derived from the non-zero singular value
and corresponding column of V :

u1 = σ−1
1 Av1 =

1
3
√

2

 1 −1
−2 2

2 −2

[
−
√

2/2
√

2/2

]
=

 −1/3
2/3

−2/3


The other two columns of U are obtained by extending the first one to form an orthonormal
basis of R3. The easiest way to do this is first to find a vector (x, y, z) that is orthogonal to the
first column of U . Taking dot product you get −x+2y−2z = 0. Solving for a suitable vector
put z = 1 and y = 1 then x = 2y−2z = 0. So the second column of U can be chosen as a unit
vector in the direction (0, 1, 1). We’ll normalize at the end. To get the third column of U say
(x, y, z) it has to be orthogonal to both of the columns already found. Taking dot products
you get: y + z = 0 and −x + 2y− 2z = 0. A solution for this is (−4,−1, 1). Normalizing this
vector gives the third column of U .

The U matrix can therefore be chosen to be (4 decimals) U =

 −0.3333 0 0.9428
0.6667 0.7071 0.2357

−0.6667 0.7071 −0.2357

.

Other vectors could be chosen for the second and third column of U , provided they extend
column 1 to be an orthonomal basis of R3. The choice given above is how Matlab calculates
the U matrix (give or take some optional minus signs).

The S matrix would be (5 decimals):

 4.2426 0
0 0
0 0

.

The V matrix is (4 decimals) V =
[
−0.7071 −0.7071

0.7071 −0.7071

]
.
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For the other matrix A
′
=


1 −1

−2 2

2 −2.1

 we get the SVD from Matlab:

U =


−0.3296 0.3023 0.8944

0.6592 −0.6045 −0.4472

−0.6759 −0.7370 −0



S =


4.2904 0

0 0.0521

0 0



V =

[
−0.6992 0.7149

0.7149 0.6992

]

Zeroing the second singular value, without changing U and V , gives:

S =


4.2904 0

0 0

0 0


and then for USV T we’ll have : 

0.9887 −1.0110

−1.9775 2.0220

2.0275 −2.0731


This can be compared to the original A and A′ matrices as a good approximation.

5. (a)

A =


−18 13 −4 4

2 19 −4 12

−14 11 −12 8

−2 21 4 8



AT A =


528 −392 224 −176

−392 1092 −176 536

224 −176 192 −128

−176 536 −128 288
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Eigenvalues of AT A are: 1600,400, 100 and 0

Eigenvectors corresponding to non-zero eigenvalues of AT A are:

v1 =


−2/5

4/5

−1/5

2/5

 v2 =


4/5

2/5

2/5

0.2

 v3 =


2/5

−1/5

−4/5

2/5

 to which a fourth vector v4 =


−1/5

−2/5

2/5

4/5


can be added to form an orthonormal basis of R4.
The first three columns of the U matrix are calculated from the V matrix columns and
non-zero singular values using the ui = σ−1

i Avi formula. The last column of U is chosen
so all the columns form an orthonormal basis for R4. This gives the U matrix:

−0.5 0.5 0.5 −0.5

−0.5 −0.5 −0.5 0.5

−0.5 0.5 −0.5 0.5

−0.5 −0.5 0.5 0.5


S matrix would be: 

40 0 0 0

0 20 0 0

0 0 10 0

0 0 0 0


and V matrix would be: 

0.4 −0.8 −0.4 0.2

−0.8 −0.4 0.2 0.4

0.2 −0.4 0.8 −0.4

−0.4 −0.2 −0.4 −0.8


(b)

A =


6 −8 −4 5 −4

2 7 −5 −6 4

0 −1 −8 2 2

−1 −2 4 4 −8


Use Matlab to calculate the eigenvalues of AT A (to 4 decimals): 270.8673, 147.8538,
23.7266, 18.5522, 0 and corresponding eigenvectors:
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v1 =



0.1002

−0.6064

0.2131

0.5217

−0.5520


v2 =



−0.3892

0.2867

0.8419

−0.1412

−0.1940


v3 =



0.7353

0.2682

0.07251

−0.3772

−0.4897


v4 =



−0.4057

0.4953

−0.4518

0.2258

−0.5787



and v5 =



0.3649

0.4825

0.1910

0.7174

0.2879


The U matrix is obtained using the first 4 (non-zero) singular values, corresponding
columns of V and the usual formula:

0.5721 −0.6518 0.4207 −0.2661

−0.6348 −0.2393 0.6754 0.2891

−0.07041 −0.6326 −0.5301 0.5602

0.5145 0.3430 0.2930 0.7292



S matrix would be: 
16.46 0 0 0 0

0 12.16 0 0 0

0 0 4.871 0 0

0 0 0 4.307 0


and V matrix would be:

0.1002 −0.3892 0.7353 −0.4057 0.3649

−0.6064 0.2867 0.2682 0.4953 0.4825

0.2131 0.8419 0.07251 −0.4518 0.1910

0.5217 −0.1412 −0.3772 0.2258 0.7174

−0.5520 −0.1940 −0.4897 −0.5787 0.2879


6. (a)

A =


4 0 −7 −7

−6 1 11 9

7 −5 10 19

−1 2 3 −1
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AT A =


102 −43 −27 52

−43 30 −33 −88

−27 −33 279 335

52 −88 335 492



Eigenvalues of AT A are (4 decimals): 749.9785, 146.2009, 6.8206, 0.00000144.
The corresponding eigenvectors of AT A are:

v1 =


−0.04893

0.1277

−0.5782

−0.8043

 v2 =


0.8186

−0.3348

−0.4216

0.2001

 v3 =


0.5715

0.4497

0.5742

−0.3761

 and v4 =


0.02846

0.8182

−0.3978

0.4142


Using the usual relationship to get the columns of U from those of V and the non-zero
singular values we have:

u1 =


0.3462

−0.4812

−0.8050

−0.02286

 u2 =


0.3990

−0.6685

0.5782

−0.2442

 u3 =


0.3446

−0.01872

0.1330

0.9291

 u4 =


−0.7760

−0.5668

−0.002831

0.2768


The expanded decomposition for A is

A =
√

749.9785u1v
T
1 +

√
146.2009u2v

T
2 +

√
6.8206u3v

T
3 +

√
0.00000144u4v

T
4

Zeroing the smallest singular value, we get:

A′ = 27.386u1v
T
1 + 12.091u2v

T
2 + 2.612u3v

T
3 =


4.0 0.0007342 −7.0 −7.0

−6.0 1.001 11.0 9.0

7.0 −5.0 10.0 19.0

−1.0 2.0 3.0 −1.0

 .

To evaluate the difference between A and A′ use ||A−A′|| = 0.0012.
The rank of A is 4 (but it’s close to singular) and rank of A′ is 3.

Now suppose b =


1

2

3

4

 and solve Ax = b to get x =


−19

−573

280

−291


The condition number of A is 23680. A matrix with a large condition number is ill-
conditioned and is very sensitive to round off errors. The condition number of A′ =
6.175 × 1016, i.e. A′ is singular to machine precision. Therefore there is no unique
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solution to A′x = b. Accumulated roundoff error can provide a meaningless (large)
solution (as in Matlab). The matrix A′ provides the singular matrix to which A is close.
Numerical algorithms have difficulty distinguishing between a matrix such as A, which is
‘close-to-singular’ and A′ which is singular. Hence the behaviour of A is ill-conditioned.

(b) A =



5 3 1 7 9

6 4 2 8 −8

7 5 3 10 9

9 6 4 −9 −5

8 5 2 11 4


Eigenvalues of AT A are: 672.5891, 280.7447, 127.5031, 1.1632, 0.00000016 with corre-
sponding eigenvectors:

v1 =



−0.4723

−0.3094

−0.1440

−0.7115

−0.3927


v2 =



−0.5883

−0.3921

−0.2463

0.2789

0.6015


v3 =



0.2432

0.1632

0.1302

−0.6428

0.6957


v4 =



0.4707

−0.2050

−0.8567

−0.04910

−0.001418



and v5 =



0.3875

−0.8257

0.4094

0.01930

−0.0005662


Corresponding columns of U (obtained from Matlab or otherwise) are:

u1 =



−0.4607

−0.2664

−0.6144

0.06491

−0.5788


u2 =



0.1791

−0.4877

0.08266

−0.8445

−0.1006


u3 =



0.3186

−0.7382

0.2429

0.5310

−0.1121


u4 =



0.4868

−0.08438

−0.7459

0.02588

0.4460



and u5 =



−0.6458

−0.3730

0.01883

0.0009253

0.6659


The expanded decomposition of A is:

A = 25.9343u1v
T
1 + 16.7554u2v

T
2 + 11.2917u3v

T
3 + 1.0785u4v

T
4 + 0.0004u5v

T
5

Zeroing the smallest singular value gives:
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A′ = 25.9343u1v
T
1 +16.7554u2v

T
2 +11.2917u3v

T
3 +1.0785u4v

T
4 =



5.0 3.0 1.0 7.0 9.0

6.0 4.0 2.0 8.0 −8.0

7.0 5.0 3.0 10.0 9.0

9.0 6.0 4.0 −9.0 −5.0

8.0 5.0 2.0 11.0 4.0


.

To evaluate the difference between A and A′ use ||A−A′|| = 0.0003779
The rank(A) = 5 and rank(A′)=4 as expected due to the zeroing of a small non-zero
singular value.

Now using b =



1

2

3

4

5


and solving Ax = b gives x =



2049

−4365

2164

102

−3



Using a different b =



1

2

3

4

5.02


very close to the first choice, and solving Ax = b again

gives a very different solution x =



2186

−4656

2308

109

−3


A is close-to-singular and very sensitive to round off error.
The matrix A′ is singular (to machine precision) therefore there is no unique solution to
A′x = b. Accumulated roundoff error can provide a meaningless (large) solution (as in
Matlab). The condition number of A = 68620 and condition number of A′ = 1.791×1016

(i.e. A′ is singular). The matrix A′ provides the singular matrix to which A is close.
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