SyDe 312 - Numerical Methods Unit I Linear Systems

Singular value decomposition supplementary problems

1. Student exploration.
2. Student exploration.
3. $A=\left[\begin{array}{ccc}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$ is a 2×3 matrix so we expect the SVD $A=U S V^{T}$ to be have $U(2 \times 2)$, $S(2 \times 3)$, and $V(3 \times 3)$. We can also expect 2 singular values for A, and the S matrix will have a third column of zeros. The matrix $A^{T} A=\left[\begin{array}{ccc}80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200\end{array}\right]$ has eigenvalues 360, 90 , and 0 . The singular values of A are the square roots of the first two eigenvalues: $\sigma_{1}=6 \sqrt{ } 10, \sigma_{2}=3 \sqrt{ } 10$ (conventionally numbered in order of decreasing magnitude). The third zero eigenvalue is irrelevant. Note that the singular values of A must also be square roots of eigenvalues of $A A^{T}$, which is a 2×2 matrix, and therefore has only two eigenvalues (the two non-zero eigenvalues of $A^{T} A$).
The first two columns of V are eigenvectors of $A^{T} A$ corresponding to the non-zero eigenvalues: $v_{1}=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ 2 / 3\end{array}\right] v_{2}=\left[\begin{array}{c}2 / 3 \\ 1 / 3 \\ -2 / 3\end{array}\right]$
The third column of V can be any unit length column vector orthogonal to the first two columns, for instance $v_{3}=\left[\begin{array}{c}2 / 3 \\ -2 / 3 \\ 1 / 3\end{array}\right]$
Last calculate the two columns of U. These are obtained from the columns of V corresponding the the non-zero singular values:

$$
\begin{gathered}
u_{1}=\sigma_{1}^{-1} A v_{1}=\frac{1}{6 \sqrt{ } 10}\left[\begin{array}{rrr}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]=\frac{1}{\sqrt{ } 10}\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
u_{2}=\sigma_{2}^{-1} A v_{2}=\frac{1}{3 \sqrt{ } 10}\left[\begin{array}{rrr}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
-2 / 3
\end{array}\right]=\frac{1}{\sqrt{ } 10}\left[\begin{array}{r}
-1 \\
3
\end{array}\right]
\end{gathered}
$$

So we have:

$$
U=\frac{1}{\sqrt{ } 10}\left[\begin{array}{cc}
3 & -1 \\
1 & 3
\end{array}\right]
$$

The matrix of singular values is:

$$
S=\left[\begin{array}{ccc}
6 \sqrt{10} & 0 & 0 \\
0 & 3 \sqrt{10} & 0
\end{array}\right]
$$

The complete SVD is:

$$
A=U S V^{T}=\frac{1}{\sqrt{ } 10}\left[\begin{array}{cc}
3 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{ccc}
6 \sqrt{10} & 0 & 0 \\
0 & 3 \sqrt{10} & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & 1 / 3 & -2 / 3 \\
2 / 3 & -2 / 3 & 1 / 3
\end{array}\right]
$$

Compared to the result of the Matlab SVD function we can see that it is the same except for sign changes, with columns u_{1}, v_{1} and v_{3} negatives are our corresponding columns. The SVD is not unique.
4. The matrix $A\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$ is 3×2 so we expect the SVD $A=U S V^{T}$ to be have $U(3 \times 3)$, $S(3 \times 2)$, and $V(2 \times 2)$. We can also expect 2 singular values for A, and the S matrix will have a third row of zeros.
The product matrix $A^{T} A=\left[\begin{array}{rr}9 & -9 \\ -9 & 9\end{array}\right]$ has eigenvalues 18 and 0 with corresponding (unit) eigenvectors: $v_{1}=\left[\begin{array}{c}-\sqrt{ } 2 / 2 \\ \sqrt{ } 2 / 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}-\sqrt{ } 2 / 2 \\ -\sqrt{ } 2 / 2\end{array}\right]$. These eigenvectors form the two columns of V and the square roots of the eigenvalues are the singular values: $\sigma_{1}=3 \sqrt{ } 2, \sigma_{2}=0$. Last calculate the columns of U. The first column is derived from the non-zero singular value and corresponding column of V :

$$
u_{1}=\sigma_{1}^{-1} A v_{1}=\frac{1}{3 \sqrt{ } 2}\left[\begin{array}{rr}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
-\sqrt{ } 2 / 2 \\
\sqrt{ } 2 / 2
\end{array}\right]=\left[\begin{array}{r}
-1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right]
$$

The other two columns of U are obtained by extending the first one to form an orthonormal basis of R^{3}. The easiest way to do this is first to find a vector (x, y, z) that is orthogonal to the first column of U. Taking dot product you get $-x+2 y-2 z=0$. Solving for a suitable vector put $z=1$ and $y=1$ then $x=2 y-2 z=0$. So the second column of U can be chosen as a unit vector in the direction $(0,1,1)$. We'll normalize at the end. To get the third column of U say (x, y, z) it has to be orthogonal to both of the columns already found. Taking dot products you get: $y+z=0$ and $-x+2 y-2 z=0$. A solution for this is $(-4,-1,1)$. Normalizing this vector gives the third column of U.
The U matrix can therefore be chosen to be (4 decimals) $U=\left[\begin{array}{rrr}-0.3333 & 0 & 0.9428 \\ 0.6667 & 0.7071 & 0.2357 \\ -0.6667 & 0.7071 & -0.2357\end{array}\right]$.
Other vectors could be chosen for the second and third column of U, provided they extend column 1 to be an orthonomal basis of R^{3}. The choice given above is how Matlab calculates the U matrix (give or take some optional minus signs).
The S matrix would be (5 decimals): $\left[\begin{array}{cc}4.2426 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$.
The V matrix is (4 decimals) $V=\left[\begin{array}{rr}-0.7071 & -0.7071 \\ 0.7071 & -0.7071\end{array}\right]$.

For the other matrix $A^{\prime}=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2.1\end{array}\right]$ we get the SVD from Matlab:

$$
U=\left[\begin{array}{ccc}
-0.3296 & 0.3023 & 0.8944 \\
0.6592 & -0.6045 & -0.4472 \\
-0.6759 & -0.7370 & -0
\end{array}\right]
$$

$$
\begin{aligned}
& S=\left[\begin{array}{cc}
4.2904 & 0 \\
0 & 0.0521 \\
0 & 0
\end{array}\right] \\
& V=\left[\begin{array}{cc}
-0.6992 & 0.7149 \\
0.7149 & 0.6992
\end{array}\right]
\end{aligned}
$$

Zeroing the second singular value, without changing U and V, gives:

$$
S=\left[\begin{array}{cc}
4.2904 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

and then for $U S V^{T}$ we'll have :

$$
\left[\begin{array}{cc}
0.9887 & -1.0110 \\
-1.9775 & 2.0220 \\
2.0275 & -2.0731
\end{array}\right]
$$

This can be compared to the original A and A^{\prime} matrices as a good approximation.
5. (a)

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
-18 & 13 & -4 & 4 \\
2 & 19 & -4 & 12 \\
-14 & 11 & -12 & 8 \\
-2 & 21 & 4 & 8
\end{array}\right] \\
A^{T} A=\left[\begin{array}{cccc}
528 & -392 & 224 & -176 \\
-392 & 1092 & -176 & 536 \\
224 & -176 & 192 & -128 \\
-176 & 536 & -128 & 288
\end{array}\right]
\end{gathered}
$$

Eigenvalues of $A^{T} A$ are: 1600,400, 100 and 0
Eigenvectors corresponding to non-zero eigenvalues of $A^{T} A$ are:
$v_{1}=\left[\begin{array}{c}-2 / 5 \\ 4 / 5 \\ -1 / 5 \\ 2 / 5\end{array}\right] v_{2}=\left[\begin{array}{c}4 / 5 \\ 2 / 5 \\ 2 / 5 \\ 0.2\end{array}\right] v_{3}=\left[\begin{array}{c}2 / 5 \\ -1 / 5 \\ -4 / 5 \\ 2 / 5\end{array}\right]$ to which a fourth vector $v_{4}=\left[\begin{array}{c}-1 / 5 \\ -2 / 5 \\ 2 / 5 \\ 4 / 5\end{array}\right]$ can be added to form an orthonormal basis of R^{4}.
The first three columns of the U matrix are calculated from the V matrix columns and non-zero singular values using the $u_{i}=\sigma_{i}^{-1} A v_{i}$ formula. The last column of U is chosen so all the columns form an orthonormal basis for R^{4}. This gives the U matrix:

$$
\left[\begin{array}{cccc}
-0.5 & 0.5 & 0.5 & -0.5 \\
-0.5 & -0.5 & -0.5 & 0.5 \\
-0.5 & 0.5 & -0.5 & 0.5 \\
-0.5 & -0.5 & 0.5 & 0.5
\end{array}\right]
$$

S matrix would be:

$$
\left[\begin{array}{cccc}
40 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and V matrix would be:

$$
\left[\begin{array}{cccc}
0.4 & -0.8 & -0.4 & 0.2 \\
-0.8 & -0.4 & 0.2 & 0.4 \\
0.2 & -0.4 & 0.8 & -0.4 \\
-0.4 & -0.2 & -0.4 & -0.8
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{ccccc}
6 & -8 & -4 & 5 & -4 \\
2 & 7 & -5 & -6 & 4 \\
0 & -1 & -8 & 2 & 2 \\
-1 & -2 & 4 & 4 & -8
\end{array}\right]
$$

Use Matlab to calculate the eigenvalues of $A^{T} A$ (to 4 decimals): 270.8673, 147.8538, 23.7266, 18.5522, 0 and corresponding eigenvectors:
$v_{1}=\left[\begin{array}{c}0.1002 \\ -0.6064 \\ 0.2131 \\ 0.5217 \\ -0.5520\end{array}\right] v_{2}=\left[\begin{array}{c}-0.3892 \\ 0.2867 \\ 0.8419 \\ -0.1412 \\ -0.1940\end{array}\right] v_{3}=\left[\begin{array}{c}0.7353 \\ 0.2682 \\ 0.07251 \\ -0.3772 \\ -0.4897\end{array}\right] v_{4}=\left[\begin{array}{c}-0.4057 \\ 0.4953 \\ -0.4518 \\ 0.2258 \\ -0.5787\end{array}\right]$
and $v_{5}=\left[\begin{array}{c}0.3649 \\ 0.4825 \\ 0.1910 \\ 0.7174 \\ 0.2879\end{array}\right]$
The U matrix is obtained using the first 4 (non-zero) singular values, corresponding columns of V and the usual formula:

$$
\left[\begin{array}{cccc}
0.5721 & -0.6518 & 0.4207 & -0.2661 \\
-0.6348 & -0.2393 & 0.6754 & 0.2891 \\
-0.07041 & -0.6326 & -0.5301 & 0.5602 \\
0.5145 & 0.3430 & 0.2930 & 0.7292
\end{array}\right]
$$

S matrix would be:

$$
\left[\begin{array}{ccccc}
16.46 & 0 & 0 & 0 & 0 \\
0 & 12.16 & 0 & 0 & 0 \\
0 & 0 & 4.871 & 0 & 0 \\
0 & 0 & 0 & 4.307 & 0
\end{array}\right]
$$

and V matrix would be:

$$
\left[\begin{array}{ccccc}
0.1002 & -0.3892 & 0.7353 & -0.4057 & 0.3649 \\
-0.6064 & 0.2867 & 0.2682 & 0.4953 & 0.4825 \\
0.2131 & 0.8419 & 0.07251 & -0.4518 & 0.1910 \\
0.5217 & -0.1412 & -0.3772 & 0.2258 & 0.7174 \\
-0.5520 & -0.1940 & -0.4897 & -0.5787 & 0.2879
\end{array}\right]
$$

6. (a)

$$
A=\left[\begin{array}{cccc}
4 & 0 & -7 & -7 \\
-6 & 1 & 11 & 9 \\
7 & -5 & 10 & 19 \\
-1 & 2 & 3 & -1
\end{array}\right]
$$

$$
A^{T} A=\left[\begin{array}{cccc}
102 & -43 & -27 & 52 \\
-43 & 30 & -33 & -88 \\
-27 & -33 & 279 & 335 \\
52 & -88 & 335 & 492
\end{array}\right]
$$

Eigenvalues of $A^{T} A$ are (4 decimals): 749.9785, 146.2009, 6.8206, 0.00000144. The corresponding eigenvectors of $A^{T} A$ are:
$v_{1}=\left[\begin{array}{c}-0.04893 \\ 0.1277 \\ -0.5782 \\ -0.8043\end{array}\right] v_{2}=\left[\begin{array}{c}0.8186 \\ -0.3348 \\ -0.4216 \\ 0.2001\end{array}\right] v_{3}=\left[\begin{array}{c}0.5715 \\ 0.4497 \\ 0.5742 \\ -0.3761\end{array}\right]$ and $v_{4}=\left[\begin{array}{c}0.02846 \\ 0.8182 \\ -0.3978 \\ 0.4142\end{array}\right]$
Using the usual relationship to get the columns of U from those of V and the non-zero singular values we have:
$u_{1}=\left[\begin{array}{c}0.3462 \\ -0.4812 \\ -0.8050 \\ -0.02286\end{array}\right] u_{2}=\left[\begin{array}{c}0.3990 \\ -0.6685 \\ 0.5782 \\ -0.2442\end{array}\right] u_{3}=\left[\begin{array}{c}0.3446 \\ -0.01872 \\ 0.1330 \\ 0.9291\end{array}\right] u_{4}=\left[\begin{array}{c}-0.7760 \\ -0.5668 \\ -0.002831 \\ 0.2768\end{array}\right]$
The expanded decomposition for A is

$$
A=\sqrt{749.9785} u_{1} v_{1}^{T}+\sqrt{146.2009} u_{2} v_{2}^{T}+\sqrt{6.8206} u_{3} v_{3}^{T}+\sqrt{0.00000144} u_{4} v_{4}^{T}
$$

Zeroing the smallest singular value, we get:

$$
A^{\prime}=27.386 u_{1} v_{1}^{T}+12.091 u_{2} v_{2}^{T}+2.612 u_{3} v_{3}^{T}=\left[\begin{array}{cccc}
4.0 & 0.0007342 & -7.0 & -7.0 \\
-6.0 & 1.001 & 11.0 & 9.0 \\
7.0 & -5.0 & 10.0 & 19.0 \\
-1.0 & 2.0 & 3.0 & -1.0
\end{array}\right]
$$

To evaluate the difference between A and A^{\prime} use $\left\|A-A^{\prime}\right\|=0.0012$.
The rank of A is 4 (but it's close to singular) and rank of A^{\prime} is 3 .
Now suppose $b=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ and solve $A x=b$ to get $x=\left[\begin{array}{c}-19 \\ -573 \\ 280 \\ -291\end{array}\right]$
The condition number of A is 23680. A matrix with a large condition number is illconditioned and is very sensitive to round off errors. The condition number of $A^{\prime}=$ 6.175×10^{16}, i.e. A^{\prime} is singular to machine precision. Therefore there is no unique
solution to $A^{\prime} x=b$. Accumulated roundoff error can provide a meaningless (large) solution (as in Matlab). The matrix A^{\prime} provides the singular matrix to which A is close. Numerical algorithms have difficulty distinguishing between a matrix such as A, which is 'close-to-singular' and A^{\prime} which is singular. Hence the behaviour of A is ill-conditioned.
(b) $A=\left[\begin{array}{ccccc}5 & 3 & 1 & 7 & 9 \\ 6 & 4 & 2 & 8 & -8 \\ 7 & 5 & 3 & 10 & 9 \\ 9 & 6 & 4 & -9 & -5 \\ 8 & 5 & 2 & 11 & 4\end{array}\right]$

Eigenvalues of $A^{T} A$ are: $672.5891,280.7447,127.5031,1.1632,0.00000016$ with corresponding eigenvectors:
$v_{1}=\left[\begin{array}{c}-0.4723 \\ -0.3094 \\ -0.1440 \\ -0.7115 \\ -0.3927\end{array}\right] v_{2}=\left[\begin{array}{c}-0.5883 \\ -0.3921 \\ -0.2463 \\ 0.2789 \\ 0.6015\end{array}\right] v_{3}=\left[\begin{array}{c}0.2432 \\ 0.1632 \\ 0.1302 \\ -0.6428 \\ 0.6957\end{array}\right] v_{4}=\left[\begin{array}{c}0.4707 \\ -0.2050 \\ -0.8567 \\ -0.04910 \\ -0.001418\end{array}\right]$
and $v_{5}=\left[\begin{array}{c}-0.8257 \\ 0.4094 \\ 0.01930 \\ -0.0005662\end{array}\right]$
Corresponding columns of U (obtained from Matlab or otherwise) are:
$u_{1}=\left[\begin{array}{c}-0.4607 \\ -0.2664 \\ -0.6144 \\ 0.06491 \\ -0.5788\end{array}\right] u_{2}=\left[\begin{array}{c}0.1791 \\ -0.4877 \\ 0.08266 \\ -0.8445 \\ -0.1006\end{array}\right] u_{3}=\left[\begin{array}{c}0.3186 \\ -0.7382 \\ 0.2429 \\ 0.5310 \\ -0.1121\end{array}\right] u_{4}=\left[\begin{array}{c}0.4868 \\ -0.08438 \\ -0.7459 \\ 0.02588 \\ 0.4460\end{array}\right]$
and $u_{5}=\left[\begin{array}{c}-0.6458 \\ -0.3730 \\ 0.01883 \\ 0.0009253 \\ 0.6659\end{array}\right]$
The expanded decomposition of A is:

$$
A=25.9343 u_{1} v_{1}^{T}+16.7554 u_{2} v_{2}^{T}+11.2917 u_{3} v_{3}^{T}+1.0785 u_{4} v_{4}^{T}+0.0004 u_{5} v_{5}^{T}
$$

Zeroing the smallest singular value gives:
$A^{\prime}=25.9343 u_{1} v_{1}^{T}+16.7554 u_{2} v_{2}^{T}+11.2917 u_{3} v_{3}^{T}+1.0785 u_{4} v_{4}^{T}=\left[\begin{array}{ccccc}5.0 & 3.0 & 1.0 & 7.0 & 9.0 \\ 6.0 & 4.0 & 2.0 & 8.0 & -8.0 \\ 7.0 & 5.0 & 3.0 & 10.0 & 9.0 \\ 9.0 & 6.0 & 4.0 & -9.0 & -5.0 \\ 8.0 & 5.0 & 2.0 & 11.0 & 4.0\end{array}\right]$.
To evaluate the difference between A and A^{\prime} use $\left\|A-A^{\prime}\right\|=0.0003779$
The $\operatorname{rank}(A)=5$ and $\operatorname{rank}\left(A^{\prime}\right)=4$ as expected due to the zeroing of a small non-zero singular value.
Now using $b=\left[\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$ and solving $A x=b$ gives $x=\left[\begin{array}{c}2049 \\ -4365 \\ 2164 \\ 102 \\ -3\end{array}\right]$
Using a different $b=\left[\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ 5.02\end{array}\right]$ very close to the first choice, and solving $A x=b$ again
gives a very different solution $x=\left[\begin{array}{c}2186 \\ -4656 \\ 2308 \\ 109 \\ -3\end{array}\right]$
A is close-to-singular and very sensitive to round off error.
The matrix A^{\prime} is singular (to machine precision) therefore there is no unique solution to $A^{\prime} x=b$. Accumulated roundoff error can provide a meaningless (large) solution (as in Matlab). The condition number of $A=68620$ and condition number of $A^{\prime}=1.791 \times 10^{16}$ (i.e. A^{\prime} is singular). The matrix A^{\prime} provides the singular matrix to which A is close.

