SyDe 312 - Numerical Methods Unit I Linear Systems

Singular value decomposition supplementary problems

1. Student exploration.

2. Student exploration.

3. A= [ ;l 171 ié ] is a 2 x 3 matrix so we expect the SVD A = USVT to be have U(2 x 2),

S(2 x 3), and V(3 x 3). We can also expect 2 singular values for A, and the S matrix
80 100 40

will have a third column of zeros. The matrix ATA = | 100 170 140 | has eigenvalues
40 140 200

360, 90 , and 0. The singular values of A are the square roots of the first two eigenvalues:
o1 = 64/10,02 = 3,/10 (conventionally numbered in order of decreasing magnitude). The
third zero eigenvalue is irrelevant. Note that the singular values of A must also be square
roots of eigenvalues of AA”, which is a 2 x 2 matrix, and therefore has only two eigenvalues
(the two non-zero eigenvalues of AT A).

The first two columns of V are eigenvectors of A7 A corresponding to the non-zero eigenvalues:

1/3 2/3
vi=1|2/3|wve=| 1/3
2/3 —2/3
The third column of V can be any unit length column vector orthogonal to the first two
2/3
columns, for instance vz = | —2/3
1/3

Last calculate the two columns of U. These are obtained from the columns of V' corresponding
the the non-zero singular values:
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So we have:

The matrix of singular values is:
5 6vV10 0 0
|l 0 3V10 0



The complete SVD is:

Ceor 1 [3 -11[6VI0 0 0 /3 2/3 _2/3
g [ ]

Compared to the result of the Matlab SVD function we can see that it is the same except for
sign changes, with columns w1, v and vs negatives are our corresponding columns. The SVD
is not unique.
1 -1
. The matrix A | —2 2 | is 3 x 2 so we expect the SVD A = USVT to be have U(3 x 3),
2 =2
S(3 x 2), and V(2 x 2). We can also expect 2 singular values for A, and the S matrix will
have a third row of zeros.

-9
The product matrix AT A = ] has eigenvalues 18 and 0 with corresponding (unit)
-9 9
. ' | =v2/2 o =v2/2 .
eigenvectors: wv; = [ J2/2 and v = | /22 | These eigenvectors form the two

columns of V and the square roots of the eigenvalues are the singular values: o1 = 3,/2,09 = 0.

Last calculate the columns of U. The first column is derived from the non-zero singular value
and corresponding column of V:
o T Il EVE T B e
up = 0y Av1:3—2 -2 2 = 2/3
% 2 -2 V2/2 —2/3
The other two columns of U are obtained by extending the first one to form an orthonormal
basis of R3. The easiest way to do this is first to find a vector (z,y, z) that is orthogonal to the
first column of U. Taking dot product you get —x + 2y — 2z = 0. Solving for a suitable vector
put z =1 and y = 1 then x = 2y —2z = 0. So the second column of U can be chosen as a unit
vector in the direction (0,1,1). We’ll normalize at the end. To get the third column of U say
(z,y,z) it has to be orthogonal to both of the columns already found. Taking dot products
you get: y+ 2z =0 and —x + 2y — 2z = 0. A solution for this is (=4, —1,1). Normalizing this
vector gives the third column of U.
—0.3333 0 0.9428
The U matrix can therefore be chosen to be (4 decimals) U = 0.6667 0.7071  0.2357
—0.6667 0.7071 —0.2357
Other vectors could be chosen for the second and third column of U, provided they extend
column 1 to be an orthonomal basis of R3. The choice given above is how Matlab calculates
the U matrix (give or take some optional minus signs).

4.2426 0
The S matrix would be (5 decimals): 0 0
0 0

-0.7071 —0.7071

The V matrix is (4 decimals) V = 07071 —0.7071 |



1 =1
For the other matrix A" = | —2 2 we get the SVD from Matlab:
2 =21

—0.3296 0.3023  0.8944

U= 0.6592 —0.6045 —0.4472
—-0.6759 —0.7370 -0
4.2904 0
S = 0 0.0521
0 0

—0.6992 0.7149
| 07149 0.6992

Zeroing the second singular value, without changing U and V', gives:

4.2904 0
S = 0 0
0 0

and then for USVT we’ll have :
0.9887 —1.0110
—-1.9775  2.0220
2.0275 —2.0731

This can be compared to the original A and A’ matrices as a good approximation.

(a) ) _
~18 13 -4 4

2 19 -4 12
-14 11 -12 8
-2 21 4 8

528 392 224 176
=392 1092 —-176 536

224  —-176 192 —128
| —176 536 —128 288

AT A =




Eigenvalues of AT A are: 1600,400, 100 and 0

Eigenvectors corresponding to non-zero eigenvalues of AT A are:

Sy
4/5
“1/5
L 2/5 ]

v = Vo =

[ 4/5

2/5
2/5
0.2

2/5

~1/5

—4/5
2/5

V3 =

to which a fourth vector vq =

can be added to form an orthonormal basis of R2.

s
—2/5
2/5

4/5

The first three columns of the U matrix are calculated from the V' matrix columns and
non-zero singular values using the u; = o; ! Av; formula. The last column of U is chosen
so all the columns form an orthonormal basis for R*. This gives the U matrix:

S matrix would be:

and V matrix would be:

[ —0.5 0.5
-0.5 —0.5
-0.5 0.5

| —05 —05

[ 40 0

0 20

0 0
00

04 —0.8
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0.2 —0.4

| —04 —02
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0 -1
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0.5 —0.5
-05 0.5
-0.5 0.5

05 05 |
0 0]

0 0

10 0

0 0|

—04 0.2

02 04

0.8 —0.4
—-04 —0.8 |
—4 5 —4]
-5 —6 4
-8 2 2

4 4 -8 |

Use Matlab to calculate the eigenvalues of ATA (to 4 decimals): 270.8673, 147.8538,
23.7266, 18.5522, 0 and corresponding eigenvectors:



[ 0.1002 | [ —0.3892 ] [ 0.7353 ] [ —0.4057 |
—0.6064 0.2867 0.2682 0.4953
vp=| 02131 |wy=| 08419 | vg3=| 0.07251 | vy = | —0.4518
0.5217 —0.1412 —0.3772 0.2258
| —0.5520 | | —0.1940 | | —0.4897 | | —0.5787 |
0.3649
0.4825
and vs = | 0.1910
0.7174
| 0.2879 |

The U matrix is obtained using the first 4 (non-zero) singular values, corresponding
columns of V and the usual formula:

0.5721  —0.6518 0.4207 —0.2661
—0.6348 —0.2393 0.6754  0.2891
—0.07041 —-0.6326 —0.5301 0.5602

0.5145 0.3430  0.2930  0.7292

S matrix would be:

[16.46 0 0 0 0
0 1216 0 0 0
0 0 4871 0 0

|0 0 0 4.307 0 |

and V matrix would be:

0.1002 —0.3892 0.7353 —0.4057 0.3649
—0.6064 0.2867  0.2682  0.4953 0.4825
0.2131  0.8419 0.07251 —0.4518 0.1910
0.5217 —0.1412 —-0.3772 0.2258 0.7174
| —0.5520 —0.1940 —-0.4897 —0.5787 0.2879

4 0 -7 -7
-6 1 11 9
A=
7 -5 10 19
-1 2 3 -1




[ 102 —43 —27 52
—43 30 —-33 —88
—27 —-33 279 335
52 —88 335 492

AT A =

Eigenvalues of AT A are (4 decimals): 749.9785, 146.2009, 6.8206, 0.00000144.

The corresponding eigenvectors of AT A are:

[ —0.04893 | [ 0.8186 | [ 0.5715 ] [ 0.02846 ]
0.1277 —0.3348 0.4497 0.8182
v = vy = V3 = and v4 =
—0.5782 —0.4216 0.5742 —0.3978
—0.8043 | | 0.2001 —0.3761 0.4142 |

Using ‘the usual relationship to get the columns of U from those of V and the non-zero
singular values we have:

0.3462 ] [ 0.3990 ] [ 0.3446 ] [ —0.7760

—0.4812 —0.6685 —0.01872 —0.5668
uyp = ug = uz = Ug =

—0.8050 0.5782 0.1330 —0.002831

—0.02286 | —0.2442 | | 09291 | | 02768 |

The eipanded decompositiz)n for A is

A = /749.9785u v 4 v/146.2009usv1 + v/6.8206usv] + +/0.00000144u4v]

Zeroing the smallest singular value, we get:

4.0 0.0007342 -7.0 -7.0
—6.0 1.001 11.0 9.0
7.0 -5.0 10.0 19.0
-1.0 2.0 3.0 -1.0

A’ = 27.386uiv] + 12.091ugvd + 2.612usvl =

To evaluate the difference between A and A’ use ||A — A’|| = 0.0012.
The rank of A is 4 (but it’s close to singular) and rank of A’ is 3.

1 -19

2 —573
Now suppose b = and solve Ax = b to get x =

3 280

4 ~291 |

The condition number of A is 23680. A matrix with a large condition number is ill-
conditioned and is very sensitive to round off errors. The condition number of A’ =
6.175 x 106, i.e. A’ is singular to machine precision. Therefore there is no unique



solution to A’z = b. Accumulated roundoff error can provide a meaningless (large)
solution (as in Matlab). The matrix A’ provides the singular matrix to which A is close.
Numerical algorithms have difficulty distinguishing between a matrix such as A, which is
‘close-to-singular’ and A’ which is singular. Hence the behaviour of A is ill-conditioned.

5 3 1 7 9
6 4 2 8 -8
7T 5 3 10 9
96 4 -9 -5
8§ 5 2 11 4

Eigenvalues of AT A are: 672.5891, 280.7447, 127.5031, 1.1632, 0.00000016 with corre-
sponding eigenvectors:

v =

and vy =

u1

and us =

The expanded decomposition of A is:

[ —0.4723
—0.3094
—0.1440
—0.7115

| —0.3927

[ —0.4607 |
—0.2664
—0.6144
0.06491

| —0.5788

—0.3

—0.6458 ]

0.01883
0.0009253
0.6659

Vo =

0.3875
—0.8257
0.4094
0.01930

| —0.0005662 |
Corresponding columns o

U2

730

[ —0.5883
—0.3921
—0.2463

0.2789
0.6015

0.1791
—0.4877
0.08266
—0.8445
| —0.1006

V3 =

u3

0.2432
0.1632
0.1302
—0.6428
0.6957

0.3186
—0.7382
0.2429
0.5310

| —0.1121 |

V4 =

Uy =

| —0.001418 |

0.4707
—0.2050
—0.8567

—0.04910

f U (obtained from Matlab or otherwise) are:

0.4868
—0.08438
—0.7459
0.02588
0.4460

A = 25.9343u1vT + 16.7554usvd + 11.2917usvd + 1.0785u40] + 0.0004uzvd

Zeroing the smallest singular value gives:



A’ = 25.9343u1vT +16.7554u9vd +11.2917Tuzvd +1.0785u4v]

[ 5.0
6.0
7.0
9.0

| 8.0

3.0
4.0
5.0
6.0
5.0

To evaluate the difference between A and A’ use ||A — A’|| = 0.0003779
The rank(A4) = 5 and rank(A’)=4 as expected due to the zeroing of a small non-zero

singular value.

Using a different b =

o Bk W

gives a very different solution x =

1
2
Now using b= | 3 | and solving Ax = b gives x =
4
5

2186
—4656
2308
109
-3

2049
—4365
2164
102

A is close-to-singular and very sensitive to round off error.

1.0
2.0
3.0
4.0
2.0

7.0
8.0
10.0
-9.0
11.0

9.0
-8.0
9.0
-5.0
4.0

very close to the first choice, and solving Ax = b again

The matrix A’ is singular (to machine precision) therefore there is no unique solution to
A’z = b. Accumulated roundoff error can provide a meaningless (large) solution (as in
Matlab). The condition number of A = 68620 and condition number of A’ = 1.791 x 1016
(i.e. A’ is singular). The matrix A’ provides the singular matrix to which A is close.




